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Summary. Construction of a genome map of highly poly- 
morphic markers has become possible in the past decade. 
Establishing a complete marker map is an enormous 
task. Therefore, designs to map molecular markers 
should be optimal. Designs to detect and estimate linkage 
between markers from segregating populations were 
studied. Two measures of design quality were used. The 
expectation of the maximum lod score indicates the pos- 
sibility of designs to detect linkage. The accuracy of esti- 
mating recombination rate was measured as the proba- 
bility that the true recombination rate is in a specified 
internal given the estimate. Accurate approximate meth- 
ods were developed for rapid evaluation of designs. Seven 
family types (e.g., double backcross) can be distinguished 
that describe all families in a segregating population. The 
family type influences the expected maximum lod score 
and the accuracy of estimation. The frequency of favor- 
able family types increased with increasing marker poly- 
morphism. At a true recombination rate of 0.20, 27 obser- 
vations on offspring when five alleles were segregating, 
and 55 observations on offspring when two alleles were 
segregating, were necessary to obtain an expected maxi- 
mum lod score of 3. The probability that the true recom- 
bination rate was between 0.15 and 0.25, given an esti- 
mate of 0.20, was about 0.85 for a design with 40 families 
with ten offspring and two alleles segregating and for a 
design with ten families with ten offspring and six alleles 
segregating. For smaller designs, accuracies were less, 
approximate evaluation of accuracy was not justified 
and, on average, true recombination rates were much 
greater than estimated given a specified value for the 
estimated recombination rate. 
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Introduction 

The construction of a genome map is in progress for 
several livestock species (e.g., Fries et al. 1989; Bitgood 
and Somes 1990; Georges et al. 1990; Haley et al. 1990; 
Brascamp et al. 1991). A map of marker loci, i.e., loci 
showing Mendelian inheritance, is of use in the further 
mapping and utilization of loci affecting quantitative 
traits of economic importance and for the introgression 
and isolation of genes (Soller and Beckman 1983; Ken- 
nedy et al. 1990). Constructing a map of marker loci is 
laborious, hence optimal experimental designs and effi- 
cient statistical procedures are important. 

Methods to detect and estimate linkage between loci 
based on completely inbred lines of plant and animal 
species have been extensively described (e.g., Mather 
1951; Bailey 1961; Ritter et al. 1990). The availability of 
inbred lines provides a way to optimize the design of 
experiments to map marker loci. Inbred lines are widely 
used in plants and laboratory animals. For livestock spe- 
cies completely inbred lines are not available. Methods 
using information from segregating populations have 
been developed in human genetics (Morton 1955; Ott 
1991). Here, the influence of the researcher on the exper- 
imental design is limited. Therefore, emphasis has been 
on the development of efficient estimation ]procedures 
given the data. In livestock species, however, experimen- 
tal designs can be optimized. In most species many pater- 
nal half sibs and full sibs can be obtained in a short 
period. 

In genome mapping experiments a certain set of fam- 
ilies is used to map marker loci. In a segregating popula- 
tion a family can be a backcross, an intercross or another 
type. Once families are selected they are used irrespective 
of their suitability for a specific pair of markers. There- 
fore, parameters are needed to measure the effectiveness 
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of detecting and estimating linkage for different family 
types. The importance of a family type will be determined 
by its frequency rather than its suitability. An overview of 
family types, value per family type, frequencies of family 
types, and other aspects of importance in designing an 
experiment to map loci in a segregating population, is 

currently unavailable. 
This paper describes factors influencing the quality of 

designs to map marker loci. Family types will be de- 
scribed systematically. Experimental designs will be com- 
pared with respect to the detection of linkage and the 
accuracy of estimates in segregating populations. Accura- 
cy will be the probabili ty that true recombinat ion rate is 
in a specified interval given an estimated value for recom- 
binat ion rate. For  the detection of linkage an approxi- 
mate algorithm is developed and evaluated. The accura- 
cies of estimates obtained from two approximate 
methods are compared with results obtained from simu- 
lation. Optimal  designs are determined by varying the 
number  and size of full-sib families for different levels of 
recombinat ion rate and polymorphism of marker loci. In  
addition, the importance of a knowledge of the linkage 
phase of marker alleles in the parents is determined. 

Notation and assumptions 

The linkage relationships between two loci with completely 
codominant inheritance is studied. Loci are denoted as A and B 
with alleles {A~, A2, ...} and {B D B 2 .... } respectively. Geno- 
types are given as At A~ B 1B 2 when the linkage phase, or simply 
phase, is unknown and as A 1B1/A 1B 2 when the phase is known 
('/' separates the two haplotypes). 

Recombination rate is denoted as O, its maximum likelihood 
estimate as 0 and the true value as 0 t. The probability of a certain 
event x is denoted as P (x). 

Observations are from full-sib families with information for 
two generations; i.e., genotypes are known without error for 
parents and offspring. Full-sib families are assumed to be unre- 
lated and of equal size. 

Methods 

Estimation of recombination rate 

The recombination rate between two markers is estimated by 
maximum likelihood. The likelihood function for designs with 
genotype information on parents and offspring of unrelated full- 
sib families is: 

Ny Ny n (f) 
L(O) = l-I If(O) = I]  r I  e(gf(p)lg~i,gal,o) 

Nf 
= 17 P (Of (p)[ hsf,  hdj',i,O) P (hsfilgsf) P (hdfjlgdf) 

f = l  i -1  j = l  p= l  

where ly is the likelihood for family f, g~y is the genotype of the 
sire, gay is the genotype of the dam, gfcp) is the genotype of the 
pth offspring of family f, h,i i is the haplotype of the sire-given 
phase i, hnyj is the haplotype of the dam-given phase j, Ny.is the 
number of full-sib families, n ( f )  is the number of offsprmg in 
family f ,  and 0 is the recombination rate. 

Three components determine the likelihood function: (1) 
information on the parental phase; (2) information on the 
gamete a parent transmits to an offspring; and (3) identification 
of parental gametes in offspring. These three factors will now be 
examined in more detail. 

(1) For a given genotype two phases are possible each with 
a probability of 0.5. When the phase for one or both parents is 
known, e.g., derived from genotypes of grandparents, the likeli- 
hood function can be simplified. 

(2) An animal with genotype AiBk/A~B z produces the two 
non-recombinant gametes A~Bk and AjB l and the two recombi- 
nant gametes A~B, and AjB k . Probabilities are 0.5 - (l - 0) for the 
two non-recombinant gametes and 0.5 �9 0 for the two recombi- 
nant gametes. When an animal is homozygous for locus A, A,B, 
can not be distinguished from Aj B k. The probability of a gamete 
which is either A~B k or AjB k is 0.5. (t - 0) + 0.5.0 = 0.5, i.e., the 
probability does not depend on 0. The type of a gamete which 
is either AiB k or AjBk is unknown and observing such a gamete 
provides no information about the recombination rate. An ani- 
mal can produce three types of gametes that are denoted as 
non-recombinant (non), recombinant (rec) and unknown (un). 

(3) Information on the genotype of an offspring and phases 
in parents is not always sufficient to decide which alleles an 
offspring inherited from a parent. For example, let A~Bk/AjB ~ 
and AcBk,/Aj,B r be genotypes of two parents and A~A~B~B W 
the genotype of an offspring. If i ~ i', j # j ' ,  k r k' and l # l' then 
any gamete the sire produces differs from the gamete the dam 
produces which enables identification of the parental gametes in 
offspring. However, if i= i ' , j= j ' ,  i # j  and t r  for locus A then 
both A t and A u could be inherited from either parent and 
parental ,gametes cannot be identified. 

Offspring can be classified according to the type of gametes 
received from their parents. Within one class, offspring have 
equal probability given parental phases, P(gy~p) lh~I ~, hdfj, 0), in 
equation (1) and the following seven classes can be distinguished: 

un, un two gametes of unknown type 
un, non one gamete of unknown type, 

one gamete non-recombinant 
un, rec one gamete of unknown type, 

one gamete recombinant 
non, non two gametes non-recombinant 
non, rec one gamete non-recombinant, 

one gamete recombinant 
rec, rec two gametes recombinant 
2non/2rec two gametes non-recombinant or 

two gametes recombinant. 

The first class can result from the mating A1BJAiB ~ x 
A2B2/A2B2 where recombinant gametes cannot be distin- 

Table 1. Information on gametes inherited and P (9~(p) lhsll, hnr 0) 
for the possible genotypes of the offspring of parents with geno- 
types AiBi/A2B 2 �9 AiB1/A1BE 

Offspring genotype Type of P(gj.(p)lh~yl, hd.q,O) 
gametes 

A1A1B1B i =A1B1/AiB1 Un, non 
A1A2B2B2 = A2B2/A1B2 Un, non 

AiA1B2B z =AxB2/A1B 2 Un, rec 
A1A2BiB x =A2Bi/A1B 1 Un, rec 

A1AiBiBz =AIBi/AiB2 Un, un 
or A1Bz/A1Bt 

AiA2BiB 2 =A2Bi/AiB 2 Un, un 
or A2B2/A1B 1 

1/20-o) .  1/2 
1/2 (t - 0) .  1/2 
V2 o. 1/2 
1/2 0.1/2 

1/4 o + 1/4 (t - o )  
= 1/4 
1/4 0 + 1/4 (I --0) 
= t / 4  
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guished from non-recombinant gametes. Such a mating provides 
no information. Offspring with genotype A~AzB~B 2 from the 
mating A i B 1/A 2 B z x A i B i/A 2 B ~ either inherit two non-recom- 
binant gametes or two recombinant gametes, i.e., class 2non/  
2rec. Tables 1 and 2 give offspring for two different matings that 
contain examples for all classes�9 

For given parental phases two offspring with different geno- 
types can be in the same class, i.e., have equal probability, 
P (g$(v)lh~i, ha~, 0), in equation (1). For other parental phases, 
these two offspring either have equal or different probabilities. 
Offspring which have equal probabilities independent of 
parental linkage phase can be grouped in likelihood calcula- 
tions. All animals within a group have the same contribution to 
the likelihood function but the contribution of the group might 
differ between parental phases. Let WSk denote the k th group of 
offspring of family f.  Without loss of information, equation (1) 
can be written as: 

Ny 2 2 nwy 

L(0)= I ]  Z 52 ~-i[P(wf~lh~si,haf.i,O)]'~ 
f = l  / = 1  j - 1  k = l  

�9 P (h~f~ I g~s) P (hes~loes) (2) 

in which nfk denotes the number of offspring in group Wsk and 
nw~. the number of groups in family f.  Expectation of the likeli- 
hood can be calculated easier from this equation than from 
equation (1). 

Family types 

Families can be divided in seven groups according to possible 
classes of offspring (Table 3). The probability that a family from 
a segregating population is of certain type depends on polymor- 
phism of the marker. For instance, any family will be of type I 
when a marker has only one allele. Assuming Hardy-Weinberg 
equilibrium and linkage equilibrium, probabilities can be calcu- 
lated for different family types using the frequencies of the mark- 
er alleles. 

For most family types the parental phase does not affect the 
classes to which an offspring can be assigned. For family types 
IV and V, parents have the same genotypes but differ in phase. 
The classes to which an offspring can be assigned differ between 
parental phases for these two family types. When parental 
phases are unknown, family types IV and V can not be distin- 
guished but have equal probability. All other family types can be 
distinguished without knowing the parental phases. 

Detection of linkage 

To determine the strength of evidence in favor of linkage the lod 
score (Morton 1955) is commonly used. The lod score is defined 
a s :  

Z (0) = log,o \L(1 /2 ) J  (3) 

The maximum value of Z (0) is denoted by Z (0). 
A maximum lod score of 3 and larger is regarded as signifi- 

cant evidence for linkage�9 A lod score of 3 approximately equals 
an 0.05 probability of falsely positive linkage (Morton 1955; Ott 
1991). A maximum lod score is not available at the time an 
experiment is planned. However, the expected maximum lod 
score can be calculated. The expectation provides a measure of 
the expected amount of evidence for linkage from a design. The 
expectation for the maximum lod score, E [Z (0)], given parental 
genotypes and phases is 

ND 

EfZ(0)] = 52 P(D~) Z~(0 ~) (4) 
x = l  

Table 2. Information on gametes inherited and P (gj(p)[h~j'~, haj. j, O) 
for possible genotypes of offspring of parents with genotypes 
A1Bi/AzB2 " AIBi/AzB 2 

Offspring genotype Type of P (gf(p)[hsfl, ha f j ,  O) 
gametes 

A1A1BiB 1 = A t  B1/AiB 1 Non, non 
A2A2B2B 2 = A2B2/A2B 2 Non, non 

A1A1B2B2 =A1B2/A1B2 Rec, rec 
AzA2BiB i =A2Bi/A2B 1 Rec, rec 

AIA2B1B i =AiB1/AEB i Non, rec a 
or A2BJAIB i 

AiA2BzB2 =AxB2/A2B2 Non, rec 
or A2B2/A1B 2 

AiA1B1B2 = A1Bi/A1Bz Non, rec 
or AiB2/A1B 1 

AzA2B1B 2 = A2Bi/A2B 2 Non, rec 
or A2B2/A2B i 

AiA2BiB2 =AiB1/A2B2 2non/2rec 
or A2B2/AIB t 
or A1B2/A2B 1 
or A2B1/A1B 2 

1/2(1-0)- 1/2 (1-0) 
1/2 (1-0) 1/2 (1-0) 
1/20.1/20 
1/2 o. 1/20 
2- 1/20.1/2(1-0) 

2.1/20.1/2(1-0) 

2.1/20.1/2 (l-O) 

2.1/20.1/2 (1-0) 

2.1/2 (1-0) 
�9 1/2(1-0)+2 
�9 1/2 o .  1/2 0 

a Both possible combinations of haplotype, given the genotype 
of the offspring and linkage phases, include a non-recombinant 
gamete and a recombinant gamete; the factor in front of the 
probability of this class is due to the two possibilities�9 For mat- 
ings with other parental haplotype combinations it is possible 
that only one haplotype combination including one non and one 
rec can be derived from the genotype given the hap]lotypes (eg., 
A1B1/A2B2 �9 AaBa/A4B ~ gives AiAaB2B4). P (O:.(p) lhsll, hdfj, O) 
is then 1/2 ( 1 - 0 ) .  1/2 0 

Table 3. Gamete type inherited by offspring for the seven possi- 
ble family types 

Family Type of gametes 
type 

Un, Un Un, Non, Non, Rec, 2non 
un non rec non rec rec or 2rec  

I 
II 
III 
IV 
V 
VI 
VII 

I - None of the parents is heterozygous for both loci. This family 
type provides no information about linkage 
II Single backcross, both parents have the same alleles for the 
intercrossed locus (e.g., AiBI/A2B2 �9 AiB1/AiB 2 
III - Double backcross (e.g., A1B1/A2B 2 �9 A1B1/AiB1) or single 
backcross in which the parents have at least one allele not in 
common for the intercrossed locus (e.g., A 1B x/A 2 B 2 " A i B 1/A 1 B 3) 
IV - Intercross between parents with the same alleles for both 
loci and unequal phase (e.g., AIBi/AzBz �9 AiB2/A2B1) 
V Intercross between parents with the same alleles for both loci 
and equal phase (e.g., A1Bi/A2B 2 �9 A1Bi/A2Bz) 
VI Intercross between parents with the same alleles for one 
locus and at most one allele in common for the other locus (e.g., 
A1Bi/AzB 2 - AiBi/A2B3) 
VII - Intercross between parents in which both loci have at most 
one allele in common (e.g., AIB1/A2B z �9 AIB1/A3Ba) 
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in which D x is the data in realization x, ND is the number of 
possible realizations of data, P (Ox) is the probability for D r given 
0 and phases, and Z x (0) is the maximum lod score for data set x. 

The E [Z (0)] for a design with unknown phases is the weight- 
ed average of the E [Z (0)] for all the possible phases. 

The number of data sets to be considered in an exact calcu- 
lation of E [Z (0)] increases rapidly with the number of families 
and number of offspring per family. Computational require- 
ments soon exceed a practical level. An approximate method to 
calculate E [Z (0)], based on distributional properties of the lod 
score, is used. 

The expectation of Z (0) over all realizations of data can be 
written as 

( L(0  
E[Z(O)] = E log~o L(Ot) L(1/2)/I 

L(OO/ L(1/2)/ (5) 

L(O) 
The term 2 In has asymptotically a ;(2 distribution (Kendall 

L(O,) 
and Stuart 1978) with an expectation over all data sets of 1. 

, L(O) 
L(O) and 1oglo ~ leads to Equivalence between 0.217.2 In L(Ot) 14t10 

an approximation of the first part of (5): 

( L(0)~ =0 .217E(21n  L(0))m0.217.  (6) E logxo L(Ot)/ \ L(O,)J 

The second part of (5) E loglo L(1/2)JJ' is equal to the ex- 

pected lod score (Ott 1991). The expected lod score is additive 
over families (Ott 1991) and can be calculated as: 

(1ogj-~ L(Ot)~ ( loglo~i  lf(O,)) E 
L(1/2)] = E \  J'=~ Is(l~2)/ 

=y22__ 1~ ~ioglo ~ )  (7) 

where If represents the likelihood for family f as defined by (1). 
The fact that families of the same type and with an equal 

number of offspring have equal expectation can be used for 
further simplification: 

, ~ l E  (loglo ls (0,) ' ] 7 li(O,) ~ 
~ ;  = ,~lm, E (log10 l, (1/2)// 

z. rnr ~. P(dr (8) 
~=1 y=l \li(1/21dr 

where i denotes family type, m~ the number of families of type i, 
d~y the realization y of data for all families of type i, ndr the 
number of possible realizations of data for a family of type i, and 
P(di~ ) the probability of realization of d~y. 

Combining (6) and (8) results in an approximate E [Z (0)], 
E [Z (0).,1: 

E [ Z ( 0 ) j  =0.217 + ~ rn~ Z P(d~,)loglo (9) 
i = l  y = l  \Ii(l/2[diy)J 

In segregating populations, family type of a family is un- 
known at the start of an experiment and the exact value of m~ is 
unknown. The expectation for m~ is calculated as the product of 
the number of families and the probability that a family is of 
type i. 

Exact calculation of the E [Z (0)] involves the maximization 
uP 

of many ( I ]  nd I where nd I is the number of realizations of data 
f= l  

for family f )  likelihood functions. This number is reduced con- 

siderably with approximation (9), i.e., 2 }2 n d r. 
i = l  

For families of type I, II, III, VI or VII, E [Z (0)] is indepen- 
dent of the phases. To calculate E [Z (0)] in these cases an arbi- 
trary phase is assigned to a family when phases are unknown. 
When a family can be either type IV or V given its parental 
genotypes, E [Z (0)] is calculated for both cases. The average of 
both possibilities is used as an approximation to E [Z (0)]. 

Accuracy of estimation 

The accuracy of the estimated recombination rate (0) is mea- 
sured as the probability that true recombination rate (0t) is in a 
specified interval given the estimate (0= x). This probability is 
calculated as: 

p(y~ <Ot< y2lO=x)= P(O=xlyl <Ot< Y2) 
P (O= x) (10) 

where 
Y2 

P(O=xlyl <Ot<y2) = ~ P(O=xlOt)f(Ot)d(O,) and 
y l  

0,5 

P(O=x) = S P(O=xlOt)f(Ot) d(O,) with 
o 

y~ and Y2 = lower and upper limits for 0t, respectively and 
f(Ot) = prior density function of 0t. 

Calculation of (10) involves the use of the probability density 
of estimates given the true recombination rate to calculate the 
probability that an estimate is in a certain range given 0 t and a 
prior probability density function of 0,. 

The maximum likelihood estimate is asymptotically normal- 
ly distributed and has asymptotic variance equal to the inverse 
of the expected information (Kendall and Stuart 1978). Informa- 
tion is defined as the second derivative of the likelihood function. 
When parental linkage phases are known for a family of given 
type, expected information is a linear function of the number of 
offspring in the family. For example, a family of family type III 
with n offspring has expected information n/(O" (1 - 0)). The rela- 
tion between the number of offspring and the expected informa- 
tion is nonlinear when parental phases are unknown. 

The probability that an estimate is in a certain range for a 
given 0, is approximated assuming a normal distribution with 
variance equal to the inverse of the expected information. The 
same approximation is used for the probability that the true 
recombination rate is in a certain range for a given value of the 
estimated recombination rate. 

The prior density function of the recombination rate be- 
tween marker loci depends on several factors: the number of 
chromosomes of the species, the lengths of chromosomes, the 
physical distribution of marker loci on chromosomes, and the 
relation of distance and recombination rate between loci. 

The following is assumed: loci have a probability of 1/20th 
to be located on the same chromosome, loci are uniformly dis- 
tributed over chromosomes with a length of I morgan, and map 
distance and recombination rate are related by Haldane's (1919) 
mapping function. Following the approach of Morton (1955) the 
prior density function of 0, is: 

f(O~) = 0.05 (0.5 ln(1-20~)  + 1) for 0<_0,< 0.432; 

f(0t) = 0 for 0.432 <0t<0.5;  

f(0t) = 0.95 for 0,=0.5. (11) 



Simulation 

The average value of the maximum lod score, the distribution of 
the maximum likelihood estimator of 0, and the distribution of 
0 t for a given value of 0 were all obtained using Monte Carlo 
simulation. 

The average maximum lod score was calculated for all seven 
family types for different values of 0 and a different number of 
offspring per family. In each simulated data set the number of 
offspring in each group Wfk was simulated using the probabilities 
of groups. The probability of genotype group wlk for a given 
family type depends on 0. Values of 0.05 and 0.20 for 0 and 
numbers of offspring of 2, 4, 8, 16 and 32 were used. For each 
alternative, t,000 data sets were simulated. In each data set Z (0) 
was computed and averaged to obtain E [Z (0)]. 

The distribution of the maximum likelihood estimator of 0 
was calculated from estimated recombination rates in different 
replicates. Recombination rate was estimated from data contain- 
ing information from several families. The probability that a 
family is of a given type was calculated from the frequencies of 
marker alleles assuming Hardy-Weinberg equilibrium for indi- 
vidual loci and linkage equilibrium between loci. These proba- 
bilities were used to simulate family types for a data set. The 
following values were used; for 0: 0.05, 0.20 and 0.50; for the 
number of families: 1, 2, 4, 8, 16 and 32; for the number of 
offspring per family: 2, 4, 8, 16, 32. For each alternative, 10,000 
data sets were simulated. 

The distribution of 0 t for a given value of 0 was determined 
for a given number of offspring per family and a given number 
of families. Simulations to obtain the distribution were as fol- 
lows. First, two markers were randomly located on a chromo- 
some of I morgan using a uniform distribution. The recombina- 
tion rate between the markers was calculated from the distance 
between the markers assuming Haldane's (1919) mapping func- 
tion. Family types and information on offspring were simulated 
for the simulated 0 t and 0 calculated from the data. This was 
repeated 100,000 times. The number of realizations of (O=x, 
Ot=y ) were counted. Second, 100,000 data sets were simulated 
with markers located on different chromosomes, i.e., for 0 t = 0.50. 
Maximum likelihood estimates were calculated and the number 
of realizations of (O=x,  Or= 0.50) counted. The number of real- 
izations of (O=x, 0t=0.50 ) were multiplied by 19 to take into 
account the prior probability that two markers are on separate 
chromosomes is 19 times the prior probability that two markers 
are on the same chromosome. Obtained from counts of (0=x, 
0 t = y) were: the distribution of 0 t given 0= x; the distribution of 
0 given 0~ = y; P (yl < 0~ < yz[O = x); the average value of 0~ given 
0= x and the average value of 0 given 0 t = y. The following values 
were used in simulations; for number of families: 10, 20 and 40; 
for number of offspring per family: 4, 10 and 46. 
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Results 

Detec t ion  

Figure 1 shows the approximated expected maximum lod 
score, E[Z(0)ap], and the expected maximum lod score 
obtained by simulation, E [Z (0)sire], for alternatives with 
4 - 1 6  families and 4 - 1 6  offspring per family. The 
E [Z (0)ap ] agree with the expectation obtained by simula- 
tion. The E [Z(0)ap] will be used in this study and called 
E [Z (0)] in the remainder of this paper. 

Probabilities of family types were calculated assum- 
ing a populat ion in Hardy-Weinberg equilibrium. The 
number  of alleles per marker locus influenced the distri- 

but ion of families over family types (Table 4). The proba- 
bility of family type I (least favorable family type) de- 
creased and the probability of type VII (most favorable 
family type) increased when the number  of alleles in- 
creased. The heterozygosity of marker loci increased with 
an increasing number  of alleles. The marginal  change per 
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Fig. 1. Relation between simulated expected maximum lod score 
and approximated expected maximum lod score based on de- 
signs with 4-16 unrelated full-sib families with 4-16 offspring 
where each (+) represents a design 

Table 4. Probability of family types for a varying number of equiprobable alleles 

No. % Hetero- Type I Type II Type III Type IV Type V Type VI Type VII 
alleles zygous 

2 50 0.56 0.25 0.13 0.03 0.03 0.00 0.00 
3 67 0.31 0.09 0.41 0.01 0.01 0.09 0.09 
4 75 0.19 0.04 0.46 0.00 0.00 0.09 0.22 
5 80 0.13 0.02 0.44 0.00 0.00 0.07 0.33 
6 83 0.09 0.01 0.42 0.00 0.00 0.06 0.412 
7 86 0.07 0.00 0.39 0.00 0.00 0.05 0.49 
8 88 0.05 0.00 0.36 0.00 0.00 0.04 0.55 
9 89 0.04 0.00 0.33 0.00 0.00 0.03 0.59 

10 90 0.03 0.00 0.31 0.00 0.00 0.03 0.63 
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Table 5. Expected maximum lod score (E [Z (0)]) for designs with one family for different family types and number of offspring per 
family, for two values of 0 t and when phase is known; E [Z (0)] for phase known minus E [Z (0)] when phase is unknown is given 
between brackets 

No. Family type 
offspring 

II III IV V VI VII 

0t = 0.05 
4 0.46 {0.19} 1.02 {0.29} 0.87 {0.26} 1.40 {0.54} 1.40 {0.46} 1.93 {0.59} 
8 1.01 {0.28} 1.93 {0.30} 1.57 {0.30} 2.62 {0.60} 2.62 {0.60} 3.68 {0.60} 

16 1.93 {0.30} 3.68 {0.30} 2.88 {0.30} 5.00 {0.60} 5.00 {0.60} 7.12 {0.60} 
32 3.68 {0.30} 7.12 {0.30} 5.50 {0.30} 9.74 {0.60} 9.74 {0.60} 13.98 {0.60} 
0 t = 0.20 
4 0.31 {0.14} 0.59 {0.22} 0.35 {0.14} 0.65 {0.35} 0.65 {0.20} 0.92 {0.41} 
8 0.57 {0.19} 0.92 {0.25} 0.46 {0.17} 1.03 {0.46} 1.03 {0.31} 1.57 {0.53} 

16 0.92 {0.25} 1.57 {0.28} 0.68 {0.21} 1.80 {0.55} 1.80 {0.43} 2.90 {0.59} 
32 1.58 {0.29} 2.90 {0.30} 1.14 {0.26} 3.36 {0.60} 3.36 {0.52} 5.58 {0.60} 

additional allele decreased with an increasing number of 
alleles for both the heterozygosity and the probabilities of 
family types. The results in Table 4 show a clear relation 
between the distribution over family types and het- 
erozygosity. This relation is expected to hold when the 
number of alleles differs per locus and when alleles have 
unequal frequencies. 

Table 5 gives the relation between E [Z (0)] and family 
type, the number of offspring, Or, and knowledge of the 
parental phases. When phases were known, the E [Z (0)] 
of family types II, III and VII were in the proportion of 
0.5:1:2 independent of 0 t and the number of offspring. 
This proportion corresponds to the number of informa- 
tive gametes for these family types. The ratio between the 
E [Z (0)] for family type IV and family type III was close 
to 0.8 when the recombination rate was 0.05. The ratio 
was 0.4 when the recombination rate was 0.20. For family 
types V and VI, ratios with family type III were 1.4 when 
the recombination rate was 0.05 and 1.15 when the re- 
combination rate was 0.20. For family types IV, V and VI, 
there was no direct relation between the proportional 
E [Z (0")] and the number of gametes. 

The difference in E [Z (0)] due to a knowledge of phase 
approached to a constant for each family type with in- 
creasing family size (Table 5). As an explanation, consider 
the function for the lod score for one double backcross 
family (family type III): 

1Odk . . . .  (0) = 1Oglo \ 0.5" / 

= X log z o (0) + (n--x) log 1 o (1 --0) 

+ n loglo (2) 

l~ . . . .  (0) = l~176 ( 0'5 (0x(1-  0)"-x+ (10.5" 0)* 0"-~)  

+ n loglo (2) 

=1Oglo ~ +1Oglo l + \ l _ 0 j  / 

+ x loglo 0 + ( n - x )  loglo(1-0)  

+ n loglo (2) 

where x is the number of recombinant gametes, lodk . . . .  
is the function for lod score when the phase is known, and 
lOdu,k . . . .  is the function for lod score when the phase is 
unknown. The expectation for x is n* 0 t. The term 

goes to zero when n becomes large and 0 t is not close to 
0.5. The difference between the lod score for phase known 
and phase unknown is then a constant (0.3), which equals 
to the difference in E [Z (O)]. Similar relations occur for 
families of other types. The difference in E [Z (0)] ap- 
proached 0.3 for family types II, III and IV and 0.6 for 
family types V, VI and VII. 

The additional number of observations on offspring 
needed to compensate for a smaller E [Z (0)] due to lack 
of knowledge of phases was dependent on family type and 
0 t. Therefore, the additional number of observations on 
offspring needed for an average family depended on poly- 
morphism of the marker and 0 t (Table 6). The maximum 
of 5.5 occurred when the number of alleles was two and 
0 t was 0.2. The alternative to typing additional offspring 
is typing grandparents (four additional observations). 
Partial or complete knowledge of phases can be obtained 
from grandparents. 



Table 6. Additional number of observations" on offspring to 
compensate for a smaller expected maximum lod score due to an 
unknown phase for an average informative b family from popula- 
tions with 2, 5 or t0 equiprobable alleles and a 0 t of 0.05 or 0.20 

No. Known - 0 t 
alleles unknown ~ 

0.05 0.20 

2 0.141 1.9 5.5 
5 0.336 1.4 3.6 

10 0.462 1.4 3.6 

" Average difference in E [Z (0)] divided by the average E [Z (0)] 
per observation on offspring. Average E [Z (0)] per observation 
calculated as (E [Z (0)] at 32 offspring- E [Z (0)] at 16 offspring)/16 
b An informative family is not of type I 
c Average difference in E [Z (0)] = difference in E [Z (0)] for family 
type II (= 0.3) - probability family type II + difference in E [Z (0)] 
for family type III (= 0.3)- probability family type III + etc. 

Table 7. Number of observations a on offspring for an E [Z (0)] of 
3 for an average informative family from populations with 2, 5 
or 10 alleles of equal frequency and a 0 t of 0.05 or 0.20 b 

No. 0 t 
alleles 

0.05 0.20 

2 19 55 
5 10 27 

10 8 22 

a Excluding observations on parents 
b For each family type E [Z(0)] per observation is calculated 
from the difference between E[Z(0)] with 32 offspring and 
E [Z (0)] with 16 offspring. A weighted average E [Z (0)] per obser- 
vation is calculated using the probabilities for the family types 
given the number of alleles 

Table 8. Expected maximum lod score dependent on the number 
of families and the total number of observations a on offspring for 
designs with family types due to chance (both marker loci have 
two alleles), unknown phases, and 0 t = 0.05 

No. Number of families 
observations 

1 2 4 8 16 

32 2.26 2.11 1.85 1.43 0.90 
64 4.44 4.30 4.01 3.48 2.64 

Excluding observations on parents 

The average number  of offspring in one family needed 
to obta in  an E [Z (0)] of 3 is given in Table 7 for three 
levels of marker  po lymorph ism and two values of 0 t. The 
required number  of observations on offspring was 19 for 
a 0 t of 0.05 and 55 for a 0 t of 0.20 when the number  of 
alleles was two, which is twice the number  required with 
five alleles. 
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A given number  of observat ions on offspring can be 
obta ined by analyzing different numbers  of families. 
E [Z (0)] decreased if the number  of families increased and 
phase was unknown (Table 8). Fo r  each family, informa- 
t ion is used to estimate the phase. Therefore, the required 
number  of observations to obta in  an E [Z (0)] of 3 will 
increase when observations on offspring are divided over 
more  than one family. Further ,  the number  of observa- 
tions increases with the number  of families because for 
each family two parents  must  be genotyped.  

A c c u r a c y  

In Table 9 the mean and s tandard  error  for 0a re  given for 
different numbers  of observations,  different 0 t values, and 
different full-sib family size. Observed s tandard  errors 
were obtained from replicated simulations. S tandard  er- 
rors were approximated  using the second derivative of 
the correct l ikel ihood function (aap2) and the l ikel ihood 
function where parenta l  phases were assumed known 
(aapt). Est imated recombinat ion  rates were biased up- 
ward for a 0, of 0.2. Fo r  a 0t of 0.05 an upward  bias was 
observed when the number  of animals per family was 4. 
Downward  bias was found for a 0 t of 0.5 which is in- 
evitable because est imated recombinat ion rates are re- 
stricted to be between 0 and 0.5, The bias diminished with 
an increasing number  of observations.  F o r  a given num- 
ber of observations,  bias was less when the :number of 
observat ions per family increased. Observed and approx-  
imated s tandard  errors agree closely for designs with 120 
or more observations when 0 t is 0.05 and 240 or more 
observations when 0 t is 0.20. Wi th  fewer observations 
both approximat ions  underest imated the s tandard  error. 
Approximate  s tandard  errors using the correct  l ikel ihood 
function (aap:) were closer to the observed s tandard  er- 
rors for a 0 t of 0.2. Expected information,  calculated from 
the correct  l ikel ihood function, is zero for unlinked loci 
and, as a result, ~ap~ does not  exist for a 0 t of 0.5. 

The observed cumulative probabi l i ty  dis t r ibut ion of 
the estimates is compared  with the cumulat ive normal  
dis t r ibut ion in Fig. 2. Fo r  ten families of four offspring 
and two alleles for each locus, observed probabil i t ies  for 
estimates of 0 or 0.5 were larger than probabil i t ies  calcu- 
lated from the normal  distr ibution.  Differences might  be 
expected since the normal  dis t r ibut ion function is only 
approximate  for large numbers because of the central 
limit theorem. With  increasing numbers the deviat ion 
between the approx imat ion  and the observed distr ibu- 
t ion became smaller and was negligible for 400 observa- 
tions. Probabil i t ies  that  estimates were in a certain inter- 
val, given a true recombinat ion  rate, could be adequately 
approximated  using the normal  dis tr ibut ion for larger 
designs. 

Gene maps  or parts  of gene maps are often evaluated 
based on spacing between considered loci. A logical as- 
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Fig. 2. Cumulative difference between 
simulated and approximated probability 
of the e s t i m a t e d  recombination rate given 
a true  recombination rate of (a) 0.05 and 
(b) 0.20 for designs with two equiprobable 
alleles and three sizes 

Table 9. Average estimated recombination rate, observed standard error (aob ~), standard error approximated using likelihood function 
assuming parental phases known (c%/.), and standard error approximated using correct likelihood function (~p2), for designs varying 
in the number of families, family size and 0; one marker has two alleles with equal frequency and one marker locus has six alleles 
with equal frequency, parental phases are unknown 

0 t N o .  
o b s .  a 

4 offspring per family, 
6 observations per family 

10 b offspring per family, 
12 observations per family 

tTob s Gap/. O'ap2 0 O'ob s O'ap 1 O'ap 2 

0.05 30 0.057 0.083 0.055 0,057 0.052 0.067 0.051 0.051 
60 0.053 0.045 0.039 0.040 0.050 0.039 0.035 0.035 

120 0.051 0.030 0.028 0.028 0.051 0.027 0.025 0.025 
240 0.051 0.021 0.020 0.020 0.049 0.018 0.017 0.018 
480 0.050 0.014 0.014 0.014 0.050 0.013 0.012 0.012 
960 0.050 O.OtO 0.010 0.010 0.050 0.009 0.009 0.009 

0.20 30 0.247 0.166 0.107 0.124 0.219 0.136 0.098 0.102 
60 0.228 0.122 0.076 0.088 0.213 0.094 0.064 0.067 

120 0.210 0.084 0.053 0.062 0.203 0.055 0.048 0.049 
240 0.203 0.049 0.038 0.044 0.202 0.036 0.034 0,035 
480 0.202 0.032 0.027 0.031 0.200 0.025 0.024 0,025 
960 0.201 0.023 0.019 0.022 0.200 0.018 0.017 0,017 

0.50 30 0.407 0.140 0.144 * 0.430 0.110 0.131 * 
60 0.414 0.109 0.102 * 0.441 0.086 0.091 * 

120 0.426 0.093 0.072 * 0.447 0.068 0.064 * 
240 0.436 0.077 0.051 * 0.459 0.054 0.045 * 
480 0.449 0.062 0.036 * 0.463 0.046 0.032 * 
960 0.457 0.052 0.025 * 0.470 0.038 0.023 * 

" No. obs. = number of observations on parents and offspring 
b For 30 observations, 3 families each with 8 offspring were taken 
* crop2 was undefined (1/0) for 0f is 0.5 

sumpt ion  is that,  on  average,  t rue r e c o m b i n a t i o n  rate  is 

equal  to a g iven es t imated  r e c o m b i n a t i o n  rate. It  is no t  

obv ious  whe ther  or  no t  this a s sumpt ion  is always correct .  

In  Fig. 3 average  t rue r e c o m b i n a t i o n  rates are p lo t t ed  
against  es t imated  r e c o m b i n a t i o n  rates. F o r  a l ternat ives  
wi th  ten families and  four  o r  ten offspring per  family  the 

average  t rue r e c o m b i n a t i o n  ra te  devia ted  f rom the given 

es t imated  r e c o m b i n a t i o n  rate. This  dev ia t ion  can be ex- 

p la ined  by the 0.95 p r io r -p robab i l i ty  that  0t is 0.5 and the 

large var iance  of  the es t ima to r  when the n u m b e r  of  obser-  

va t ions  on offspring is small. 
M o s t  of  the dev ia t ion  be tween  es t imated  and  average  

true recombina t ion  rate disappeared when only replicates 
were cons idered  for which 0 was significantly different 
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Fig. 3 a-d.  Average true recombination rate for a given estimat- 
ed recombination rate. For 100,000 replicates the true recombi- 
nation rate was sampled from zero to 0.5 and for 100,000 repli- 
cates the true recombination rate was 0.5. Data were simulated 
based on the true recombination rate. Replicates were classified 
in 50 classes according to the estimated recombination rate. 
Because the prior probability that the true recombination rate is 
0.5 is 19 times the prior probability that the true recombination 
rate is between 0 and 0.5, replicates with a true recombination 
rate of 0.5 were weighted by a factor 19. For each class the 
average true recombination rate was calculated. Simulation was 
done for four designs with two alleles of equal frequency and 
(a) ten families with four offspring, (b) ten families with ten off- 
spring, (c) 40 families with ten offspring and (d) 20 families with 
46 offspring 
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Fig. 4. Cumulative difference between 
simulated and approximated probability 
of the true recombination rate given an 
estimated recombination rate of (a) 0.05 
and (b) 0.20 for designs with two equi- 
probable alleles and three sizes 

from 0.5, i.e., Z(0) is larger than 3. For the design with ten 
families and four offspring per family almost no replicates 
had a Z (0) above 3. This latter observation is consistent 
with the fact that for large designs the deviation disap- 
peared: recombination rates can only be significant if 
sufficient observations are available. 

The difference between the observed cumulative 
probability of 0 t given 0 and the approximated normal 
probability is plotted in Fig. 4. In all cases observed cu- 
mulative probability was smaller than approximated. 
With ten families, four offspring per family and a 0 of 0.05, 
for a 0t of 0.49 the approximated cumulative probability 
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Table 10. Simulated and approximated probability that true re- 
combination rate is in a specified interval (0.15 < 0 t < 0.25) given 
that the estimated recombination rate is 0.20 

No. Family No. P(obs) a P(approxl) b P(approx2) c 
families size alleles 

10 4 2 0.0335 0.1029 0.3507 
6 0.3013 0.6438 0.6359 

t0 2 0.1456 0.4600 0.5279 
6 0.8786 0.8543 0.8487 

10 2 0.8496 0.8529 0.8495 
6 0.9972 0.9963 0.9959 

46 2 0.9748 0.9721 0.9708 
6 1.0000 0.9999 0.9999 

40 

20 

a P(obs): observed probability, calculated from simulation 
(100,000 replicates) 
b p (approxl): the term P(OlO.15<Ot<0.25 ) from equation (t0) 
is approximated using the normal distribution 
c p (approx2): P (0.15 < 0 t < 0.2510) is entirely approximated us- 
ing the normal distribution 

was 0.34 larger than the observed cumulative probability. 
As expected, no difference was found for a 0 t of 0.5. The 
observed probability that 0 t is 0.5 for a 0 of 0.05 was 
underestimated by 0.34 by the approximate distribution 
function. For that design the probability that 0 t is smaller 
than 0.2 for a 0 of 0.05 is overestimated by 0.42 with the 
approximate distribution. For larger designs this differ- 
ence was negligible. For a 0of  0.2 probability that 0 t is 0.5 
was underestimated by 0.91 using the approximate prob- 
ability function for designs with ten families of four or ten 
offspring each (Fig. 4). For the largest design, the approx- 
imated cumulative distribution was in good agreement 
with the observed distribution. 

In Table 10 the observed and approximated 
P (Yl < Ot < Y210 = x) are given. Two approximations were 
used. In both methods P ( O = x )  is calculated as 
P ( x -  0.005 < O< x + 0.005). In the first approximation 
the probability on an estimate for a given value of 0t, or 
P (0 = x [0 t = y), is calculated assuming a normal distribu- 
tion of 0 around 0 t. Multiplying P ( O = x l O t =  y) by the 
prior probability of 0 t, integrating over 0 t, and applying 
equation (10), completes the first approximation. In the 
second approximation, the true recombination rate is 
falsely assumed to be normally distributed around 0 and 
an approximation of accuracy is directly obtained from 
the normal distribution. The second approximation is 
much more rigorous since the prior probability function 
of Ot is ignored. However, Table 10 shows that both ap- 
proximations worked equally well for the studied alterna- 
tives. The first approximation was only better for alterna- 
tives for which both approximations were bad. For 
designs larger than ten families with ten offspring and six 
equiprobable alleles per locus, approximations were sim- 
ilar and the deviation between the observed and approx- 
imated probabilities was small. 

Discussion 

The expected value of the maximum lod score and the 
accuracy of an estimated recombination rate were used to 
describe and study the quality of experimental designs. 
Ott (1991) argued that the expectation of maximum lod 
score is not additive over families and has no clear prob- 
abilistic interpretation. He concluded that, an expecta- 
tion of lod score for a given value of 0 should be preferred 
because this expectation is additive over families. The 
approximated expected maximum lod score used in this 
study was calculated as the sum of the expected lod score 
and a constant. Taking the constant into account resulted 
in a good approximation to the real situation when data 
from several families were used (Fig. 1). 

The approximate methods served two purposes. First, 
they simplified computations. Second, comprehension of 
the behavior of estimators was enhanced. 

The number of full-sib families, the number of off- 
spring per family and a knowledge of phases were shown 
to affect E [Z (0)] (Tables 5 and 8). E [Z(0")] was larger 
when the linkage phase was known. The additional num- 
ber of observations on offspring needed to compensate 
for lack of knowledge of phases was within a reasonable 
range (less than six for 0 t smaller than or equal to 0.2 
(Table 6). Typing grandparents to determine the parental 
phase is not an alternative reducing the number of 
typings to be done for that range of 0 t. However, the 
additional number of observations on offspring will in- 
crease for larger 0 t. For a 0 t larger than 0.20, obtaining 
information on parental phase might be worthwhile. The 
aim of most genome mapping projects is to create a map 
with markers spaced by no more than 20 centimorgans. 
In such projects the DNA of grandparents is not really 
needed. Hetzel (1991) pointed out that typing grandpar- 
ents provides a check for the consistency of segregation. 
However, typing many offspring also provides a check. 
The possibility of typing errors emphasized the necessity 
for typing a large number of offspring per family rather 
than typing grandparents. 

In the present paper, designs with unrelated full-sib 
families were studied. Elements influencing the quality of 
designs are most clearly illustrated for this class of de- 
signs. Computations are simple. The results for these de- 
signs can be used for all other designs with information 
on parents and offspring when the parental phase is 
known. In a hierarchical half-sib structure with an equal 
number of offspring per dam and several dams per sire, 
fewer sires are used compared to a full-sib structure with 
the same number of dams and offspring. When parental 
phases are unknown, fewer sires means that less informa- 
tion will be used to infer parental phases from the data. 
As a consequence E [Z (0)] will be larger for the hierarchi- 
cal half-sib structure. 
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Results in Table 8 showed that E [Z (0)] can be maxi- 
mized by minimizing the number of families. A minimum 
number of families is not necessarily optimal, however. 
With a minimum number of families the variation in 
realized maximum lod score is maximal and, as a conse- 
quence, the probability of having no information is max- 
imal. The risk due to a large variation in the outcome of 
an experiment can be summarized by the probability of 
no information. Assume the probability of no informa- 
tion is to be less than 0.10. The necessary number of 
families can be calculated as -1 / log lo  [P (type I)] where 
P (type I) is the probability that a family is of type I. For 
a design where marker loci have two equiprobable alleles, 
P (type I) is 0.5625 and the probability of no information 
is 0.1 when the number of families is four. Given this 
number of families, the number of offspring per family 
resulting in E [Z (0")] = 3 can be calculated. When marker 
loci have two equiprobable alleles, four families each with 
33 offspring are needed for an E [Z (0)] of 3. When marker 
loci have four equiprobable alleles the probability of no 
information is 0.04 with two families and in that case 21 
offspring per family are needed for a E [Z (0")] of 3. The 
number of offspring per full-sib family in these examples 
is larger than that available in most livestock species. The 
restriction on probability of no information will not 
change the optimal design when the number of offspring 
per family is less than 20. There is, however, still a risk 
that the realized maximum lod score in an experiment is 
lower than E [Z (0)]. A more general approach is to look 
at the power of a design. 

The relation between marker polymorphism and dis- 
tribution over family types demonstrated the advantage 
of highly polymorphic markers (Table 4). The research of 
Georges et al. (1990) in cattle showed an average het- 
erozygosity of 51% for VNTR markers and 65% for 
microsatellites. These heterozygosities correspond to 
about two or three alleles of equal frequency (see Table 4), 
or more alleles of varying frequencies. Consequently, 
on average, a considerable proportion of the families 
will provide no, or less than maximal, information on 
linkage. 

Boehnke (1986) described a simulation approach by 
which the average maximum lod scores and power can be 
obtained for any design. For plants, elements of the de- 
sign of experiments are described in standard text books 
(e.g. Mather 1951; Bailey 1961; Green 1981). Restriction 
is usually made to designs with double backcrosses or 
intercrosses, family types III  and V respectively, and 
known phases. The present study described all possible 
family types in a segregating population and paid atten- 
tion to families larger than those used for human linkage 
studies. The derived algorithm considers marker poly- 
morphism, all family types, and can be used for varying 
full-sib family sizes and the number of families. The meth- 
od of Boehnke (1986) is general and further calculates 

power but requires simulation of many replicates for each 
design to be evaluated. 

Accuracy was calculated from the distribution func- 
tion of 0 t for a given value of 0. Elements of the function 
were studied and compared with approximations. Bias in 
the estimate of recombination rate, given a 0 t for designs 
with few observations, could be explained by the ob- 
served distribution of the estimates. Bias of estimated 
recombination rates was studied in more detail by 
Bolling and Murphy (1979). For designs larger than or 
equal to ten families with ten offspring, use can be made 
of the normal distribution with an approximated stan- 
dard error to calculate the probability for an estimate 
given a true recombination value. 

The use of the prior-probability density of 0~t in link- 
age studies has been advocated by Smith (1959), Smith 
and Sturt (1976), Silver and Buckler (1986) and Neumann 
(1990, 1991). This approach considers the 0.95 probabili- 
ty that loci are unlinked. The effect of prior density of true 
recombination rate is shown in Fig. 3. The 0.95 probabil- 
ity of no linkage resulted in a large deviation between 
true and estimated recombination rate. The influence of 
the large probability of unlinked loci on average estimat- 
ed recombination rate could be reduced by considering 
only replicates which had an estimate for 0 significantly 
different from 0.5. 

For large designs, inferences about true recombina- 
tion rate can be made using the normal distribution and 
the approximated standard error. For small designs, a 
restriction needs to be made to significant recombination 
rates. The results of this study emphasize the necessity to 
use significant estimates because non-significant esti- 
mates are not only inaccurate but, on average, are very 
different from true recombination rates. 
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